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An inverse scattering method is tested which appears to work very well. It is an iterative 
procedure based on the distorted wave Born approximation. The resulting Fredholm equation 
of the first kind is solved by a projection method that requires the construction of an 
orthonormal set of basis functions from the set of kernel functions. This can be done by the 
spectral expansion method which entails matrix diagonalization or by Gram-Schmidt 
orthogonalization. The method is tested on a simple one-dimensional optical wave inverse 
scattering problem. Both orthonormalization methods lead to a rapidly convergent and stable 
iteration. The spectral expansion method gives somewhat better results, but the 
Gram-Schmidt orthogonalization method, which is the novel aspect of our approach, is much 
less time-consuming. We show how the projection method can be generalized to the case of 
acoustic wave scattering where the target must be characterized by more than a single 
independent function of position. 0 1986 Academic Press, Inc. 

I. INTRODUCTION 

In the direct scattering problem one seeks to calculate the scattering amplitude 
from a knowledge of the incident wave field and the properties of the scatterer. In 
the inverse scattering problem one seeks to determine the properties of the scatterer 
from a knowledge of the incident wave field and the scattering amplitude. The 
inverse problem is difficult because the relationship between the scattering 
amplitude and the scattering potential is nonlinear. 

A solution to this problem for spherically symmetric potentials is provided by the 
Gel’fand-Levitan equation [ 1 ] and the analogous Regge-Newton equation [2, 31. 
This approach requires knowledge of the scattering amplitude at all energies. An 
alternative approach is to linearize the relationship to be solved by introducing an 
estimate of the desired scattering potential and assuming that the difference between 
the potential and the estimate is small. The solution of the linearized relationship is 
then regarded as an improved estimate and the process is repeated. Iteration con- 
tinues until the result for the scattering potential stabilizes. 

For each iteration one must solve the direct scattering problem for the estimated 
scattering potential to provide input for the linearized relationship between the 
scattering amplitude and the scattering potential. This linearized relationship 
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generally takes the form of a Fredholm equation of the first kind. Such an equation 
is regarded as ill-posed because ordinary methods of numerical solution tend to be 
unstable. Thus special methods of numerical solution are required. 

As examples of recent iterative inverse scattering calculations we cite the work of 
A. G. Tijhuis [4], A. A. Ioannides and R. S. Mackintosh [5], and R. P. Hatcher 
and Y. M. Chen [6]. In the first two of these articles the ill-posed equation is 
solved by the method of linear least-squares inversion, also known as the selection 
method [7]. An alternative method used by Tijhuis is a smoothing procedure 
applied to the result of each iteration. Hatcher and Chen, on the other hand, use 
Tikhonov regularization [7] to solve their ill-posed equation. A survey of methods 
for dealing with the Fredholm equation of the first kind can be found in the paper 
of M. Z. Nashed [8]. 

Our purpose is to present a method for dealing with the inverse scattering 
problem which we believe to be new and which appears to be very practical. The 
method is simple in concept and appears to strike at the root of the problem. Our 
numerical tests show it to be effective and economical. The method consists in using 
the distorted wave Born approximation (DWBA) to linearize the relationship 
between the scattering amplitude and the scattering potential. The result is a 
Fredholm equation of the first kind for the scattering potential. This equation is 
solved by finding the linear combinations of the set of kernel functions that form an 
orthogonal set. This can be done by diagonalizing the overlap matrix (spectral 
expansion method) or by Gram-Schmidt orthogonalization. The ill-posedness of 
the Fredholm equation is overcome by weeding out the kernel functions which are 
not linearly independent of the set of retained functions. 

The use of the spectral expansion method for the inverse problem is not new; see 
Ref. [9] and the papers cited therein. However, the use of Gram-Schmidt 
orthogonalization in this context does appear to be new, and it results in an 
algorithm which is much less time-consuming. 

Our method for numerical solution of the Fredholm equation of the first kind is 
described in Section II. A simple one-dimensional optical wave inverse scattering 
problem is formulated in Section III. In Section III we also present the results of 
test calculations on that problem. Finally, in Section IV we show how our method 
can be generalized to deal with a more complicated class of inverse scattering 
problems where the integral equation has two unknown functions. This type of 
problem occurs in acoustic wave scattering and in electromagnetic wave scattering 
by magnetic or conducting targets. It also occurs in nuclear scattering where the 
scattering potential might have independent real and imaginary parts or indepen- 
dent central and spin-orbit parts. 

II. NUMERICAL SOLUTION OF THE FREDHOLM EQUATION OF THE FIRST KIND 

The Fredholm equation of the first kind is encountered in many applications. In 
particular, many analyses of the inverse wave-scattering problem result in such an 
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integral equation. In any attempt at numerical solution this integral equation must 
be subjected to a discretization process that transforms it into a set of 
inhomogeneous linear algebraic equations. The process of improving the numerical 
accuracy increases the size of this set of simultaneous algebraic equations. The 
Fredholm equation of the first kind is regarded as ill-posed because this process of 
refining the discretization procedure often results in the determinant of the system 
becoming very small or even vanishing. There is nothing that insures the linear 
independence of the algebraic equations produced by the discretization process. 

Let the integral equation be written in the form 

b(o) = j- dx K(o, x) d(x). (1) 

The problem is to determine 4 from a knowledge of the driving term b and the ker- 
nel K. In the inverse scattering problem we will be presented with a set of values 
b, = b(o,) (n = 1,2,..., N) that is the result of a set of measurements. The kernel 
functions K,(x) - K(o,, x) express the dynamics of the scattering process by map- 
ping the scattering potential 4 onto the set of scattering amplitudes 6,. Our task is 
to determine 4 from the finite set of equations 

bn = j- dx K,(x) 4(x), n = 1, 2 ,..., N. (2) 

Such a finite set of equations can only determine some approximation to 4, and 
even that approximate solution will not be unique. 

To discretize the equations we assume that 4(x) can be represented by the sum of 
N linearly independent functions: 

4(x)= f fnxn(x). (3) 
n=l 

Then Eq. (2) becomes 

h= $ K,mfm~ n = 1, 2,..., N 
m=l 

Km = j” dx K(%, x) L(X). (4b) 

The solution to our problem then consists in inverting the matrix K. However, as N 
increases we often find that the determinant of K tends to become small, causing the 
inversion of K to become numerically unstable. It may also happen that the 
matrix K becomes increasingly ill-conditioned with increasing N. 

One method for dealing with the ill-posed equation is called the selection method 
by Tikhonov and Arsenin [7]. In the selection method we replace N ( = the number 
of equations) in Eqs. (2) and (4a) by M> N ( = the number of independent 
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functions XJ so that we have more equations than unknown coefficients fm. Thus 
Eq. (42) is replaced by 

b,= : Kmfm n= 1, 2 ,..., N, N+ l,..., M. (da’) 
m=l 

The hope is that among the A4 equations there will be found N independent ones. 
The set of A4 equations is then solved by the method of least squares: the 
variational condition 

6 f b,- 2 K,,,f, 2=0 (5) 
n=l m=l 

is imposed. This results in 

K+b= K+Kf, (6) 

which is then solved by matrix inversion. The plus sign superscript denotes her- 
mitian conjugation. 

If the matrix K+K is still ill-conditioned or nearly singular, then the still more 
complicated regularization method [7, lo] may be employed. In this method K+K 
is replaced by another matrix J(p) which is well-conditioned and which reduces the 
K+ K when B -+ 0. For example, one might try 

J(fi)=K+K+BZ, 

where Z is the identity. Then the quantities 

(7) 

f(P) =.V-‘K’b (8) 

are found for a sequence of choices of the regularization parameter /?, and an 
optimal value of /3 is determined by means of an error principle [ 111. 

We employ a method for solving Eq. (2) which does not require matrix inversion 
and which circumvents the difficulties arising from the lack of strong linear 
independence of the kernel functions K,,(x). Eq. (2) can be interpreted as giving the 
projections b, of the vector 4 in Hilbert space on a set of vectors K,*(x) in that 
same space. Here the asterisk denotes complex conjugation. From this point of view 
it is a straightforward task to use this information to construct the projection 4 of 4 
onto the portion of Hilbert space spanned by the set K,* (n = 1,2,..., N). 

To accomplish this task we construct an orthonormal basis x,Jx) (m = 1,2,..., N) 
from the set of kernel functions: 

(;(,Ix,>=jdx;x,(x)*x,(x)=~,,. (9b) 
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Once the matrix A has been determined, the construction of the projection 6 of the 
solution 4 follows directly. Multiplication of Eq. (2) by A,, and summation on n 
gives 

(10) 

by virtue of Eq. (9). It follows that 

(11) 

Thus the projection 6 of 4 onto the subspace spanned by K,(x)* (n = 1,2,..., N) is 
expressed directly in terms of the elements of the orthonormalization matrix A. We 
will refer to this method as the projection method. 

One method of finding the matrix A is the spectral expansion method (SEM) 
described by R. L. Parker [9]. This method is also known as the singular value 
decomposition method. In this method one first evaluates the elements of the Gram 
(or overlap) matrix M: 

Mm, = (K, I K, > = s dx L(x)*Kn(x). (12) 

This is a hermitian matrix. Thus there exists a unitary transformation that 
diagonalizes the Gram matrix: 

(U+MU),,=n,,=n,s,,. (13) 

The 1, are the (real) eigenvalues of A4, and the columns of U are the eigenvectors 
of M. One can easily verify that the elements 

(14) 

form an orthonormalization matrix as defined by Eq. (9). Thus the solution of 
Eq. (2) can be achieved by diagonalizing the Gram matrix M. 

Now it may happen that some of the eigenvalues I, turn out to be zero. Then in 
the decomposition of M 

M= uflu+ (15) 

the columns of U and the rows of U+ associated with the zero eigenvalues in fact 
make no contribution to M. Thus they must be regarded as spurious. Zero eigen- 
values occur when the members of the set of kernel functions are not all linearly 
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independent. Thus in the numerical diagonalization of M one may find that some of 
the eigenvalues I, are much smaller than the rest. The associated eigenvectors x,,, 
should be deleted from the sum for 4 shown in Eq. (11). It is this step that over- 
comes the possible ill-posedness of the Fredholm equation. 

The disadvantage of the SEM is that the numerical procedure for matrix 
diagonalization is much more time-consuming than that for matrix inversion. We 
consider an alternative method for the construction of the orthogonalization 
matrix A. This method is simply the application of Gram-Schmidt 
orthogonalization (GSO) to the set of kernel functions. To construct x,* we simply 
subtract from the kernel function K,, its projection onto the space spanned by 
K,, L..., K-1 and normalize the residue. Thus GSO requires the calculation of 
the overlaps M,, defined in Eq. (12) followed by a simple sequence of mul- 
tiplications, subtractions, square roots, and divisions. The computing time expen- 
diture is comparable to that required for matrix inversion. 

The projection method using GSO turns out to be essentially the application of 
an aspect of Engkog’s method [ 121 for Fredholm equations of the second kind to 
Fredholm equations of the first kind. 

If the norm of the residue of K, following the subtraction of its projection onto 
the space spanned by K,, K, ,..., K,-, falls below some preassigned value, then K, is 
removed from the set of kernel functions, reducing its membership by one. This 
eliminates those members of the set with inadequate linear independence and 
eliminates any ill-posedness that might be present. 

III. ITERATIVE DWBA OPTICAL WAVE INVERSE SCATTERING CALCULATION 

We tested the projection method by applying it to a simple one-dimensional 
optical wave inv<,rse scattering problem. Consider wave propagation in one dimen- 
sion: 

[ 
-$+k”n(x)’ 1 lj(k, x)=0. (16) 

We suppose that the index of refraction n(x) is equal to 1 everywhere except in a 
layer -L < x < I,. We pose the following inverse scattering problem. Suppose we 
irradiate this layer with beams of different wavenumbers k, (n = 1, 2,..., N). Then at 
each wavenumber k, we have 

q+ J(X) = pnx _ R(k,) e-ik.x ” 
’ 

x< -L (174 

= [l - U(k,)] eiknx, x > L. (17b) 

Can we determine the index of refraction (IR) profile n(x)* from a knowledge of the 
values of the reflection amplitudes R, - R(k,) and transmission amplitudes U, = 
WW 
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To get a linear relationship between R and U and the IR profile, we start with 
the well known two-potential formula [13]: 

+R;“)= ($;‘,+‘*I [n(x)*-n,(x)*] IC/;+‘) 
n 

(184 

(18b) 

where I,+$,~,+) is the solution of Eq. (16) with k replaced by k,, n(x) replaced by 
n,(x), and which satisfies the asymptotic boundary condition contraints displayed 
in Eq. (17). 1+9tp,~) is the same as I+Q!,~~+’ except that its asymptotic behaviour is 
governed by 

t+bL- j(x) = [ 1 - V(k,)] eiknx, x< -L (194 
= eikex _ W(k,) e - hx, x > L. (19b) 

If the difference between n(x) and no(x) is small, then the wave field $$,+I for the 
index of refraction n(x) can be approximated by $Ip,+ ), the wave field for no(x). 
Then Eq. (18) becomes the distorted wave Born approximation (DWBA) and 
provides a Fredholm equation of the first kind for n(x)* - no(x)*. 

We employ this linear integral equation to calculate n(x)’ in the following 
fashion. An iterative procedure is followed in which a first guess is made for ni, the 
wave equation solved for the $Ip,* 1, and the values of Rip) and UL”) determined. The 
first guess will be called the zeroth iterate. The integral equation is then used to 
calculate n* from the exact values of R, and U,. This result for n* is then used in 
place of $, and the process is repeated. Succcessive iterations are carried out until 
the result for n* stabilizes. 

We have carried out a series of calculations using this DWBA iterative inverse 
scattering method. Three alternative methods of solving the integral equation were 
employed, and the results were compared. In the first two methods the equation 
was discretized by using a Fourier series to represent n(x)‘. In the first method the 
resulting algebraic equations were solved by matrix inversion. In the second method 
the equations were solved by the selection method. Finally, in the third method we 
used the projection method outlined above with Gram-Schmidt orthogonalization. 

The results for a typical case are plotted in Figs. 1, 2, and 3. In that case we let 
n(x)’ = 10 +x in the interval -2 <x < 2. For the first guess we took no(x)* = 10. 
For 1x1 > 2 both n and no equal unity. Four or live iterations sufficed to get a stable 
result. The spectrum of wavenumbers employed was chosen to be k,=0.05 + 
(n- 1) 0.15 for n = 1,2 ,..., N. We see that simple matrix inversion gives very poor 
results, the selection method gives fair results for large enough N, and that the pro- 
jection method gives excellent results for small N. 

On Table I we present some auxiliarly results relative to these calculations. d, 
and C, are the determinant and condition number of the matrix inverted in the 
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FIG. 1. Index of refraction calculated by means of the iterative DWBA inverse scattering method. 
The integral equations is discretized on a spectrum of N wavenumbers and solved by matrix inversion. 

matrix inversion method. A, and C2 are the corresponding values for the selection 
method. N and M have the definitions used in the text of this article. 6; is the dis- 
crepancy 

ai= 2 {(rn-r~))*+(t”-t~y} @a) 
fl=l 

where 

and 

r,- IR,I*, 

t,= II- U,12. 

EXACT - Nz2 ---- 
12.0- N=4 -.- 

,.,=6 ______ 

I LO- 

-2 0 -I 6 -1.2 -0.6 -04 0.0 0.4 0.6 I2 1.6 2.0 

X 

FIG. 2. Same as Fig. 1 except that the selection method is used to solve the integral equation. 



238 W. TOBOCMAN 

! 

EXACT - 
N=2 --- 

N 
c 

1 1 I I I I 
-2 0 -16 -1.2 -08 -0.4 00 04 0.8 I .2 1.6 20 

X 

FIG. 3. Same as Fig. 1 except that the projection method using Gram-Schmidt orthogonalization is 
used to solve the integral equation. 

It is a numerical measure of the quality of the inverse scattering calculation. r,, and 
t, are the reflection and transmission probabilities calculated at wavenumber k, 
from the IR profile n(x)’ while rr) and t!/) are the probabilities calculated from the 
IR profile provided by the inverse scattering calculation. 6, is the discrepancy for 
the matrix inversion method, 6, is for the selection method, and d3 is for the projec- 
tion method. Finally, NF is the actual number of equations used in the projection 
method calculation after the linearly dependent equations have been weeded out 
from the 4N real equations originally given 

The superiority of the projection method is apparent from the plots and the 
tabulated discrepancies. Note that for the matrix inversion method the condition 
number grows rapidly with increasing N. For the selection method, on the other 

TABLE I 

Parameters Relevant to the Calculations Displayed in Figs. 1, 2, and 3 

N M/NF 6, s* 63 A, AZ c, c2 

2 514 1.2E- 5 6.lE-4 4.4E- 10 8.9E- 2 4.3E- 5 8.32 11.4 
3 716 2.5E-I 4.OE- 3 1.8E-9 4.5E- 3 9.3E- 8 20.2 21.3 
4 917 1.8E-4 KOE-4 l.lE-9 1.8E-4 7.7E- 11 142 26.4 
5 1114 4.2E-4 4.5E- 3 6.OE- 5 4.3E-6 5.9E- 13 478 24.8 
6 1315 1.6E-0 KIE- 3 1.3E-4 1.3E-7 8.2E- 16 4901 26.5 

Nore. M is the number of members in the wavenumber spectrum and N is the dimension of the basis 
set used to represent the index of refraction prolile. M is set equal to N in the matrix inversion method 
and projection method calculations. NF is the number of the original 4N kernel functions retained in the 
projection method calculation. ai is the discrepancy, A, is the determinent, and C, is the condition num- 
ber where i = 1 for the matrix inversion method, i = 2 for the selection method, and i = 3 for the projec- 
tion method. 
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X 
FIG. 4. Index of refraction profiles calculated by means of the iterative DWBA inverse scattering 

method using the projection method. SEM denotes that the spectral expansion method was usec while 
GSO denotes that Gram-Schmidt orthogonalization was used. ZI identifies the zeroth iterate or first 
guess. Four iterations were required. Each iteration consumed about 1.4 set for the GSO and about 
2.8 set for the SEM. The wavenumber spectrum included six members. 

hand, the condition number is stable but the determinant diminishes rapidly with 
increasing N. Some diminution of quality is seen in the projection method for suf- 
ficiently large N. Our interpretation of this is that it is a reflection of the lack of uni- 
queness of the solution. 

In a second series of calculations we compare projection method inverse scatter- 
ing calculations using the spectral expansion method (SEM) with calculations using 
Gram-Schmidt orthogonalization (GSO). These are shown in Figs. 4, 5, and 6. The 

FIG. 5. Same as Fig. 4 except that each GSO iteration consumed about 2 set, each SEM iteration 
consumed about 5.5 set, and the wavenumber spectrum included eight members. 

581/64/l-16 
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8 I I I a, I I s I ,I II r ,I 8 4 1 
EXACT - 

. GSO-- 
SEM ----- 

6 _ ZI......... 

FIG. 6. Same as Fig. 4 except that six iterations were required, each GSO iteration consumed about 
lOsec, each SEM iteration consumed about 90sec, and the wave number spectrum included 24 mem- 
bers. 

case shown in Fig. 4 is the same as was used in the first three figures. For the cases 
displayed in Figs. 4 and 5 the SEM and GSO give results of comparable quality. 
For the case displayed in Fig. 6 the SEM gives somewhat better results than the 
GSO method. The case shown in Fig. 5 was calculated with a spectrum of eight 
wavenumbers, k, = 0.3n (n = 1, 2 ,..., 8), while the case shown in Fig. 6 was 
calculated with a spectrum of 24 wavenumbers, k, = 0.25n (n = 1,2,..., 24). Increas- 
ing the membership of the spectrum generally improves the quality of the result at 
the cost of a greater expenditure of computing time. However, one does reach a 
point of diminishing returns. 

For the cases shown in Figs. 4 and 5 there was stabilization after four iterations 
while for the case shown in Fig. 6 six iterations were required. For the case shown 
in Fig. 4 we had N= 6 and the GSO required about 1.4 set per iteration while the 
SEM required 2.8 set per iteration. For the case shown in Fig. 5 we had N= 8 and 
the GSO required 2 set per iteration while SEM required 5.5 set per iteration. For 
the case shown in Fig. 6, on the other hand, we had N= 24 and the GSO required 
about 10 set per iteration while the SEM required 90 set per iteration. We can see 
that as we address more demanding inverse scattering problems, the difference 
between GSO and SEM in computer time expenditure becomes more significant. 

The case shown in Fig. 6 has additional interest as an example of a case where 
the spatial extent of the true target is less than that of the zeroth iterate model 
target. Of course, the method cannot converge to the correct IR distribution if the 
extension of the zeroth iterate model target is too small. 
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IV. PROJECTION METHOD FOR THE INVERSE SCATTERING 
OF ACOUSTIC WAVES 

In the optical wave scattering example discussed in the previous section, the 
target was characterized by a single function of position, the index of refraction 
n(x). In other cases more than one function of position is required to represent the 
scattering inhomogeneity. Consider the equation for an acoustic wave field: 

Vy-'Vtj+~~K-~t,b=O, (21) 

where p is the density, K is the bulk modulus, and O.I is 2n times the frequency. 
Acoustic wave scattering will be produced by inhomogeneities in p or in K or in 
both. Thus we might take K, and pO to be the constant background values of K and 
p and write Eq. (21) in the form 

To provide a simple example, we consider the one-dimensional case of acoustic 
scattering. Then Eq. (22) becomes 

Ko P(X) P(X)=l--- 
~0 K(x) 

Q(x) = $ In p(x). 

Pa) 

(23b) 

(23~) 

Then in place of Eq. (18a) for the reflection amplitudes we would have in the 
DWBA 

-2ik (R - R(O)) nn n 

(24) 

Thus if we were seeking to determine the scattering “potentials” P(x) and Q(x) 
from a series of measurements of the reflection amplitude 6,, we would be required 
to solve the set of equations 

bn = dx bL(x) d(x) + 4,(x) C(x)>, I n = 1) 2,..., N Pa) 
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where 

(d(x) E P(x) - P(O)(x) 

i(x) = Q(x) - Q’o’(x) 
b n z -i2k (R -I?“)) nn n 

K,(x) - k;SJljpT+‘(x)2 

L(x) = rl/ 

(25b) 
(25~) 

Wd) 

Pe) 

Wf) 

Let us rewrite Eq. (25a) to read 

bn= (K,*l4)+ (L,*lih n = 1, 2 ,..., N. (26) 

Clearly, the best we can hope for is the projection 6 of 4 onto the space spanned by 
the K,*‘s and the projection [ of i onto the space spanned by the L,*‘s. These will be 

&x)= f xn(xKx,I4> (27) 
n=l 

where the x’s provide an orthogonal basis for the space spanned by the Kz’s and 
the <,,‘s provide an orthogonal basis for the space spanned by the L,*‘s. Thus we 
will have 

x,(x) = f N~JWX), (XnIXm)=~nm (29) 
m=l 

&l(x) = $ B,*,LzJx), (LIL> =J,, (30) 
m=l 

where the orthogonalization matrices A and B are to be determined by the spectral 
expansion method or by Gram-Schmidt orthogonalization. 

Now let us multiply Eq. (26) by either A, or B,“, sum on n, and use either 
Eq. (29) or Eq. (30). The results are 

C&A++= (a,lb>+ (trlC> 
n 

(32) 
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where 

We next expand the functions z, and crl in terms of our orthogonal basis sets: 

t,(x) = c MXKLI 
m 

I zr> = G C,m5m(x) (35) 
m 

I or> = c DdAx). (36) 
m 

Substitution into Eqs. (3 1) and (32) gives 

I= 1 

i>+ 2 E!Xx,Id). (38) 
I= 1 

This provides us with 2N linear algebraic equations for the N amplitudes (<, 14) 
and the N amplitudes (<,I I [) needed in the expansions of Eqs. (27) and (28). 

By substituting Eqs. (37) and (38) into each other we can decouple the equations 
for the amplitudes (I,,, 14) from the equations for the amplitudes (5, I [). The 
result is 

x,= <xmI~)- f J%“cLlO) (39) 
n=l 

where 

N 

x, = 0, - 1 c;,w, 

I= 1 

y,,,-w,,,- 2 D;,v, 
/=I 

&,n = i CW,n 
I= 1 

Fmn - f X,C,n 
/= I 

(41) 

(42) 

(43) 

(4) 
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Cm/- (S,lz,>=CCB,A;2,(L,IL,) (45 1 
n r 

Dm,= (xlla,>=CCA,~B~,(K,IK,). (46) 
n r 

Thus the projection method for acoustic wave inverse scattering requires two steps. 
First, the orthonormalization matrices A and B must be determined. Second, the N 
equations represented by Eq. (39) must be solved for the N amplitudes (x,1 b), 
and the N equations represented by Eq. (40) must be solved for the N amplitudes 
(Lzli)~ 

APPENDIX 

Let us outline here in a compact manner the iterative DWBA inverse scattering 
method tested in this paper. 

1. A choice is made for the model index of refraction n,,(x) and $$O** ), Rip’, and 
Ui”) are calculated by solving Eq. (16) and using the boundary conditions displayed 
in Eqs. (17) and (19). 

2. The distorted wave Born approximation is used to provide a linear integral 
equation relating the observed scattering amplitudes R, and U, to the unknown 
index of refraction n(x). This is Eq. (18) with $!,+) replaced by Ic/Ip,+). The $Ip,*), 
Rip), and Ulp) in Eq. (18) come from step 1. The equation is solved for n(x) using 
the spectral expansion method (SEM) or Gram-Schmidt orthogonalization (GSO). 

3. Return to step 1 using n(x) calculated in step 2 in place of no(x). Keep 
repeating the process until the result for n(x) stabilizes, i.e., is unaffected by sub- 
sequent iterations. 
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